p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C25⋊2C22, C23.579C24, C24.387C23, C22.3532+ 1+4, C2.43D42, (C2×D4)⋊16D4, (C2×C42)⋊30C22, C23.205(C2×D4), C23.10D4⋊76C2, C2.40(C23⋊3D4), (C22×C4).177C23, C22.388(C22×D4), C2.C42⋊36C22, C24.3C22⋊74C2, C2.4(C24⋊C22), (C22×D4).218C22, (C2×C4).87(C2×D4), (C2×C4⋊C4)⋊32C22, (C2×C22≀C2)⋊15C2, (C2×C22⋊C4)⋊29C22, SmallGroup(128,1411)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C25⋊C22
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, gag=acd, gbg=bc=cb, bd=db, fbf=be=eb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1268 in 500 conjugacy classes, 112 normal (6 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C22×D4, C25, C24.3C22, C23.10D4, C2×C22≀C2, C25⋊C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C23⋊3D4, D42, C24⋊C22, C25⋊C22
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 17)(2 18)(3 5)(4 6)(7 15)(8 16)(9 32)(10 31)(11 25)(12 26)(13 30)(14 29)(19 23)(20 24)(21 27)(22 28)
(1 13)(2 14)(3 19)(4 20)(5 23)(6 24)(7 21)(8 22)(9 25)(10 26)(11 32)(12 31)(15 27)(16 28)(17 30)(18 29)
(1 24)(2 23)(3 29)(4 30)(5 14)(6 13)(7 25)(8 26)(9 21)(10 22)(11 15)(12 16)(17 20)(18 19)(27 32)(28 31)
(1 15)(2 16)(3 10)(4 9)(5 31)(6 32)(7 17)(8 18)(11 24)(12 23)(13 27)(14 28)(19 26)(20 25)(21 30)(22 29)
(1 24)(3 10)(4 21)(6 13)(7 20)(8 18)(9 30)(11 15)(17 25)(19 26)(22 29)(27 32)
(1 27)(2 12)(3 8)(4 9)(5 28)(6 11)(7 17)(10 18)(13 15)(14 31)(16 23)(19 22)(20 25)(21 30)(24 32)(26 29)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,17)(2,18)(3,5)(4,6)(7,15)(8,16)(9,32)(10,31)(11,25)(12,26)(13,30)(14,29)(19,23)(20,24)(21,27)(22,28), (1,13)(2,14)(3,19)(4,20)(5,23)(6,24)(7,21)(8,22)(9,25)(10,26)(11,32)(12,31)(15,27)(16,28)(17,30)(18,29), (1,24)(2,23)(3,29)(4,30)(5,14)(6,13)(7,25)(8,26)(9,21)(10,22)(11,15)(12,16)(17,20)(18,19)(27,32)(28,31), (1,15)(2,16)(3,10)(4,9)(5,31)(6,32)(7,17)(8,18)(11,24)(12,23)(13,27)(14,28)(19,26)(20,25)(21,30)(22,29), (1,24)(3,10)(4,21)(6,13)(7,20)(8,18)(9,30)(11,15)(17,25)(19,26)(22,29)(27,32), (1,27)(2,12)(3,8)(4,9)(5,28)(6,11)(7,17)(10,18)(13,15)(14,31)(16,23)(19,22)(20,25)(21,30)(24,32)(26,29)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,17)(2,18)(3,5)(4,6)(7,15)(8,16)(9,32)(10,31)(11,25)(12,26)(13,30)(14,29)(19,23)(20,24)(21,27)(22,28), (1,13)(2,14)(3,19)(4,20)(5,23)(6,24)(7,21)(8,22)(9,25)(10,26)(11,32)(12,31)(15,27)(16,28)(17,30)(18,29), (1,24)(2,23)(3,29)(4,30)(5,14)(6,13)(7,25)(8,26)(9,21)(10,22)(11,15)(12,16)(17,20)(18,19)(27,32)(28,31), (1,15)(2,16)(3,10)(4,9)(5,31)(6,32)(7,17)(8,18)(11,24)(12,23)(13,27)(14,28)(19,26)(20,25)(21,30)(22,29), (1,24)(3,10)(4,21)(6,13)(7,20)(8,18)(9,30)(11,15)(17,25)(19,26)(22,29)(27,32), (1,27)(2,12)(3,8)(4,9)(5,28)(6,11)(7,17)(10,18)(13,15)(14,31)(16,23)(19,22)(20,25)(21,30)(24,32)(26,29) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,17),(2,18),(3,5),(4,6),(7,15),(8,16),(9,32),(10,31),(11,25),(12,26),(13,30),(14,29),(19,23),(20,24),(21,27),(22,28)], [(1,13),(2,14),(3,19),(4,20),(5,23),(6,24),(7,21),(8,22),(9,25),(10,26),(11,32),(12,31),(15,27),(16,28),(17,30),(18,29)], [(1,24),(2,23),(3,29),(4,30),(5,14),(6,13),(7,25),(8,26),(9,21),(10,22),(11,15),(12,16),(17,20),(18,19),(27,32),(28,31)], [(1,15),(2,16),(3,10),(4,9),(5,31),(6,32),(7,17),(8,18),(11,24),(12,23),(13,27),(14,28),(19,26),(20,25),(21,30),(22,29)], [(1,24),(3,10),(4,21),(6,13),(7,20),(8,18),(9,30),(11,15),(17,25),(19,26),(22,29),(27,32)], [(1,27),(2,12),(3,8),(4,9),(5,28),(6,11),(7,17),(10,18),(13,15),(14,31),(16,23),(19,22),(20,25),(21,30),(24,32),(26,29)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4F | 4G | ··· | 4L |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | 2+ 1+4 |
kernel | C25⋊C22 | C24.3C22 | C23.10D4 | C2×C22≀C2 | C2×D4 | C22 |
# reps | 1 | 3 | 6 | 6 | 12 | 4 |
Matrix representation of C25⋊C22 ►in GL6(ℤ)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1] >;
C25⋊C22 in GAP, Magma, Sage, TeX
C_2^5\rtimes C_2^2
% in TeX
G:=Group("C2^5:C2^2");
// GroupNames label
G:=SmallGroup(128,1411);
// by ID
G=gap.SmallGroup(128,1411);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,g*a*g=a*c*d,g*b*g=b*c=c*b,b*d=d*b,f*b*f=b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations